
QL Assembly Language Mailing List

Issue 9

Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

Download from:
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_
9

Licence:
Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

This pdf document was created on 14/11/2021 at 16:57:24.

Copyright ©2021 Norman Dunbar

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_9
https://github.com/NormanDunbar/QLAssemblyLanguageMagazine/releases/tag/Issue_9
http://creativecommons.org/licenses/by-nc/3.0

Contents

1 Preface . 7

1.1 Feedback 7

1.2 Subscribing to The Mailing List 7

1.3 Contacting The Mailing List 8

2 News . 9

3 Feedback on Issue 8 . 11

4 QL2WIN . 13

4.1 The Code 13

4.2 Filter Chains 18

5 Win2QL . 21

5.1 Changes From Ql2win 21

6 Circular Buffers . 23

6.1 How Big is my Buffer? 24

6.2 Buffer Structure 24

6.3 The Buffer Handling Code 25

6.3.1 Allocate a New Buffer . 25

6.3.2 Buffer Size Adjustments . 27

6.3.3 Free a Buffer . 28

6.3.4 Buffer Check . 29

6.3.5 Write Data to a Buffer . 30

6.3.6 Read Data from a Buffer . 31

6.3.7 Is the Buffer Full? . 33

6.3.8 Is the Buffer Empty? . 34

6.3.9 How Much Space is Used? . 35

6.3.10 How Much Space is Free? . 36

6.3.11 Flushing Buffers . 37

6.3.12 Incrementing Head and Tail Offsets . 38

6.3.13 QPC2 Bug? My Mistake? . 40

6.4 Test Harness 40

7 Image Credits . 43

Listings

3.1 Rnd 1 to 6 function . 11

4.1 Ql2win: Equates . 14

4.2 Ql2win: Job Header . 14

4.3 Ql2win: Parameter checks . 15

4.4 Ql2win: Constants . 15

4.5 Ql2win: readLoop . 16

4.6 Ql2win: gotLine . 16

4.7 Ql2win: Adding a CR . 17

4.8 Ql2win: putLine . 17

4.9 Ql2win: Exit . 18

4.10 Ql2win: Buffer . 18

5.1 Win2ql: Comments . 21

5.2 Win2ql: Job Header . 22

5.3 Win2ql: Removing a CR . 22

6.1 Allocating a circular buffer . 25

6.2 Adjusting a buffer’s size . 27

6.3 Freeing a circular buffer . 28

6.4 Validating a buffer address . 29

6.5 Writing data to a buffer . 30

6.6 Reading data from a buffer . 31

6.7 Is buffer full . 33

6.8 Is buffer empty . 34

6.9 Buffer space used . 35

6.10 Buffer free space . 37

6.11 Flushing buffers . 37

6.12 Incrementing an offset using AND . 38

6.13 Incrementing an offset using DIVU . 39

6.14 Correct offset incrementing with DIVU . 39

6.15 Incorrect offset incrementing with DIVU . 39

6.16 Test harness for cBuffer code . 41

1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist

8 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I’ve set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best format,
because I can simply include those directly, but I doubt I’ll be getting many of those! But not to
worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk

2. News

The news this time is that there is an actual printed copy of the QL Assembly Language book
available. This has been created, with my blessings, by a QL Forum member named “Tinyfpga”
who prefers to read paper books as opposed to PDF files. I can’t disagree!

The original, and always the latest PDF version (I keep fixing small errors, grammar, spelling etc)
will always be found at:

https://github.com/NormanDunbar/QLAssemblyLanguageBook/releases/latest.

If you prefer the paper version, it’s a “print on demand” thing. “Tinyfpga” has posted these
instructions on the QL Forum:

https://qlforum.co.uk/viewtopic.php?f=9&t=3294&start=40#p35207

I’ve modified them slightly as it looks like the process has changed a little since first being published.

As mentioned in an earlier post I decided to "publish" (with permission) Norman Dunbar’s PDF
book titled ’QL Today’s QL Assembly Language Programming Series - Book one’ as a real book.

I decided to publish it as an A4 354 page, lay-flat book for easy referencing. The book costs ₤7.04
plus ₤3.50 for postage and packaging direct from the printers. The method I have used for very
low cost one-off printing to order means that anyone wanting to buy a book has to use my account
to do so, as follows:

• Go to www.bookprintinguk.com
• Login as documentsforsms@gmail.com Password - forsms11 (That’s two digit ones on the

end)
• Click on the Image of the book
• When the “What would you like to do” page comes up, click on the “Order More” link
• Select "order one copy" and then go next etc until you get to buy with your own name and

address.

Hopefully, the process still remains the same.

https://github.com/NormanDunbar/QLAssemblyLanguageBook/releases/latest
https://qlforum.co.uk/viewtopic.php?f=9&t=3294&start=40#p35207
http://www.bookprintinguk.com

3. Feedback on Issue 8

No long after release, I spotted a bug in the randomisation chapter in Issue 8. On page 49, in Listing
7.3: Rnd 1 to 6 function - Part 1, I had a comment on line 67 which mentioned “divide by 65536”.
That was complete nonsense, as that would have cleared the high word and not the low word.

Marcel spotted the error and advised me that the code was clearing overflow, not dividing. My
mistake.

Marcel also spotted something else in the code I had blatantly stolen from the SMSQ sources.

It appears that the code in the rnd routine where we have this extract:

rnd
. . .
mulu # $c12d , d0 ; HHHH * 49453
mulu #$712d , d4 ; LLLL * 28973

. . .
c l r .w d0 ; HHHH 0000 (D iv id e by 65536)

. . .

Listing 3.1: Rnd 1 to 6 function

could possibly be a typo! He believes that the code should be calculating a 32 bit by 16 bit
multiplication – the expression:

myRandSeed = myRandSeed ∗$712D+1

However, it seems to be this instead:

myRandSeed = myRandSeed ∗$712D+((myRandSeed&$F0000)∗$5000)+1

12 Chapter 3. Feedback on Issue 8

Why both halves of the 32 bit random seed are not being multiplied by $712d is unknown, perhaps
the used of $c12d is a typo, perhaps it’s deliberate to make it more random. Nobody knows!

Thanks Marcel.

4. QL2WIN

From time to time I have to use Windows, or at least, attempt to open a file created on a Windows box
while using my QL1. Usually, I open the file in a text editor of some kind, change the line endings
setting and save the file that way, or I can use a myriad of Linux utilities to do the conversion. There
are quite a few. However, this wouldn’t be an ePeriodical on the use of QL Assembly Language if I
didn’t do it on a QL!

Given the above, I present for your wonderment and amazement, a small utility to convert a QL file
to Windows format. Yes! I know! I said that I had occasion to open a Windows file on my QL, but
check out the next chapter.....

4.1 The Code

It has been at least one issue, also known as “over a year”, since I last wrote a YAF2 utility. If you
have missed them, then this is indeed a YAF. To convert a file from QL format with CHR$(10)
(linefeed) line endings to Windows CHR$(13)/CHR$(10) (carriage return/linefeed) line endings,
you simply have to:

EX ram1_ql2win_bin , ram1_ql_text_file , ram1_windows_txt_file

Listing 4.1 is the start of the code and covers a few equates and such like that I will be using through
the code. As with many of my YAFs, there are only two channels required to be passed; the input
QL file and the output Windows file. As I will not be faffing around in subroutines – given the
extreme briefness of the code – the input channel id will be on the stack at 2(A7) while the output
channel id ill be on the stack at 6(A7). The word at the top of the stack will hopefully be 2 for the
number of opened channels passed.

1Don’t ask!
2Yet Another Filter

14 Chapter 4. QL2WIN

1 ;−−
2 ; QL2WIN :
3 ;
4 ; Th i s f i l t e r c o n v e r t s QL or Linux l i n e e n d i n g s t o Windows
5 ; f o r m a t .
6 ;
7 ; EX ql2win_b in , i n p u t _ f i l e , o u t p u t _ f i l e _ o r _ c h a n n e l
8 ;−−
9 ; 2 1 / 0 2 / 2 0 2 1 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t

10 ;−−
11 ; (c) Norman Dunbar , 2021 . P e r m i s s i o n g r a n t e d f o r u n l i m i t e d use
12 ; o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d . J u s t e n j o y !
13 ;−−
14
15 ;−−
16 ; How many c h a n n e l s do I want ?
17 ;−−
18 numchans equ 2 ; How many c h a n n e l s r e q u i r e d ?
19
20 ;−−
21 ; S t a c k s t u f f .
22 ;−−
23 s o u r c e I d equ $02 ; O f f s e t (A7) t o i n p u t f i l e i d
24 d e s t I d equ $06 ; O f f s e t (A7) t o o u t p u t f i l e i d
25
26 ;−−
27 ; Othe r V a r i a b l e s
28 ;−−
29 e r r _ b p equ −15
30 e r r _ e o f equ −10
31 me equ −1
32 t i m e o u t equ −1
33 l f equ $0a
34 c r equ $0d

Listing 4.1: Ql2win: Equates

Following on, we have Listing 4.2 which is the standard QDOSMSQ job header. There’s nothing
much of interest to see here, and further discussion would be fruitless. Lets move on!

35 ; ==
36 ; Here b e g i n s t h e code .
37 ;−−
38 ; S t a c k on e n t r y :
39 ;
40 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
41 ; $02 (a7) = Source f i l e c h a n n e l i d .
42 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
43 ; ==
44 s t a r t
45 b r a . s c h e c k S t a c k
46 dc . l $00
47 dc .w $4afb
48 name
49 dc .w name_end−name−2
50 dc . b ’QL2WIN’
51 name_end equ *

4.1 The Code 15

52
53 v e r s i o n
54 dc .w vers_end−v e r s i o n −2
55 dc . b ’ V e r s i o n 1 . 0 0 ’
56 v e r s _ e n d equ *

Listing 4.2: Ql2win: Job Header

Listing 4.3 is where we check the parameters passed on the stack. We should have been passed 2
channels and a word informing us of same. The code checks that all is well, and if not, we exit with
a bad parameter error.

57 ;−−
58 ; Check t h e s t a c k on e n t r y . We on ly r e q u i r e NUMCHAN c h a n n e l s .
59 ; Anyth ing o t h e r t h a n NUMCHANS w i l l r e s u l t i n a BAD PARAMETER
60 ; e r r o r on e x i t from EW (b u t n o t from EX) .
61 ;−−
62 c h e c k S t a c k
63 cmpi .w #numchans , (a7) ; Two c h a n n e l s i s a must
64 beq . s q l2win ; Ok , s k i p e r r o r b i t
65
66 b a d _ p a r a m e t e r
67 moveq # e r r_bp , d0 ; Guess !
68 b r a e r r o r E x i t ; Die h o r r i b l y

Listing 4.3: Ql2win: Parameter checks

Continuing on from Listing 4.3, we have a number of constants. These are values that will be
needed at various places in the code, but which are stored in spare registers to speed up the code by
not having to worry about getting stuff out of buffers; or from the stack; and such like. Listing 4.4,
which follows, shows that the utility is written to hold the read and write timeout in register D3, the
read/write buffer size in D4, the buffer address which is used for reading and writing is held in A3
while A4 and A5 hold the channel ids for the source and destination channels respectively.

69 ;−−
70 ; I n i t i a l i s e a c o u p l e o f r e g i s t e r s t h a t w i l l keep t h e i r v a l u e s
71 ; a l l t h r o u g h t h e r e s t o f t h e code . These a r e :
72 ;
73 ; D3 h o l d s t h e r e a d and w r i t e t i m e o u t va lue , −1.
74 ; D4 h o l d s t h e b u f f e r s i z e f o r r e a d i n g i n t o , b u f f S i z e .
75 ; A3 h o l d s t h e b u f f e r f o r r e a d i n g and w r i t i n g .
76 ; A4 h o l d s t h e s o u r c e c h a n n e l i d .
77 ; A5 h o l d s t h e d e s t i n a t i o n c h a n n e l i d .
78 ;−−
79 q l2win
80 moveq # t i m e o u t , d3 ; Timeout
81 moveq # b u f f S i z e , d4 ; S t o r a g e f o r b u f f e r s i z e f o r D2
82 l e a b u f f e r , a3 ; S t a r t o f (w r i t e) b u f f e r
83 move . l s o u r c e I D (a7) , a4 ; Source c h a n n e l i d
84 move . l d e s t I d (a7) , a5 ; D e s t i n a t i o n c h a n n e l i d

Listing 4.4: Ql2win: Constants

These constants will be swapped into the registers that need them as the code progresses. Why
bother with this? Well register to register access is much faster than memory to register access, and
while it might not speed things up for the sizes of the files I use, on the odd occasions, it might be
useful in bigger programs where there needs to be a lot of this sort of thing.

16 Chapter 4. QL2WIN

85 ;−−
86 ; The main loop s t a r t s h e r e . Read a s i n g l e byte , check f o r EOF .
87 ;
88 ; D0 = 2 (i o _ f l i n e) E r r o r code
89 ; D1 .W Bytes r e a d i n t o b u f f e r
90 ; D2 .W = B u f f e r S i z e P r e s e r v e d
91 ; D3 .W = t i m e o u t . P r e s e r v e d
92 ; A0 . L = Channel ID . P r e s e r v e d
93 ; A1 . L = S t a r t o f b u f f e r . Updated b u f f e r (A1 + D2 .W)
94 ;−−
95 readLoop
96 moveq # i o _ f l i n e , d0 ; F e t c h l i n e s en d i ng wi th LF
97 move .w d4 , d2 ; B u f f e r s i z e
98 movea . l a4 , a0 ; Channel t o r e a d
99 movea . l a3 , a1 ; Read b u f f e r s t a r t

100 t r a p #3 ; Read a l i n e from i n p u t f i l e
101 t s t . l d0 ; OK?
102 beq . s g o t L i n e ; Yes
103 cmpi . l #ERR_EOF , d0 ; A l l done y e t ?
104 beq a l l D o n e ; Yes .
105 b r a e r r o r E x i t ; Oops !

Listing 4.5: Ql2win: readLoop

The top of the main loop for the utility is shown in Listing 4.5. Here we see the use of the io_fline
function to read a string of bytes, from a channel, into a buffer. The string of bytes is terminated by
a linefeed character, and the maximum number of bytes to be read is determined by the value in
D2.W.

Don’t do as I did, and use io_sstrg instead. Because that one fills the buffer regardless of where
it finds a linefeed in the bytes being read. I spent ages looking for a bug in my code and had my
QDOS Companion open at the io_sstrg page instead of io_fline. Sigh!

The code in Listing 4.5 sets up the registers to read from the source file and reads it. If the read was
successful, we skip to the code in Listing 4.6 to process the bytes just read, otherwise we have to
check for End Of File. If we find EOF, we can bale out and close the file on the way, otherwise we
have an error and exit the utility via the error handling code.

106 ;−−
107 ; At t h i s p o i n t , we have a s t r i n g and a c l e a n r e a d wi th no
108 ; e r r o r s . Check i f we have r e a d an e n t i r e l i n e b e f o r e we t r y t o
109 ; c o n v e r t t h i s t o Windows f o r m a t .
110 ;
111 ; D1 .W = b y t e s r e a d i n t o b u f f e r , i n c LF .
112 ; A1 . L = one p a s t where t h e LF s h o u l d be .
113 ; I f −1(a1) == l f we have a whole s t r i n g .
114 ; E l s e w r i t e o u t what we have and r e a d more o f t h e same s t r i n g .
115 ;−−
116 g o t L i n e
117 move .w d1 , d2 ; By tes read , r e q u i r e d f o r w r i t e
118 cmpi . b # l f ,−1(a1) ; Did we r e a d t h e whole l i n e ?
119 bne . s p u t L i n e ; No , w r i t e o u t what we g o t

Listing 4.6: Ql2win: gotLine

The number of bytes read into the buffer is copied from D1.W to D2.W as we need D2.W to be
correctly set for writing the bytes back out to the destination channel.

4.1 The Code 17

A1.L has been adjusted to point at the character above the trailing linefeed, if there is one, so we
can check the character previous to that one. If that character is not a linefeed, then our buffer is too
small to be able to read the entire line from the input channel. In this case, we simply skip to Listing
4.8 where we will write the data we have in the buffer, unchanged, to the destination channel.

If we have found a linefeed character, we drop into Listing 4.7 to process the line further, if
necessary.

120 ;−−
121 ; We have r e a d a t l e a s t t h e end of a l i n e and have t h e LF a t
122 ; t h e c o r r e c t p l a c e i n t h e b u f f e r . I f t h e c h a r a c t e r b e f o r e i t
123 ; i s a CR i g n o r e i t and w r i t e out , o t h e r w i s e i n s e r t a CR b e f o r e
124 ; t h e LF and w r i t e i t a l l o u t .
125 ;−−
126 cmpi . b # cr ,−2(a1) ; A l r eady Windows f o r m a t ?
127 beq . s p u t L i n e ; Yes , i g n o r e CR and w r i t e o u t
128 move . b # cr ,−1(a1) ; I n s e r t CR
129 move . b # l f , (a1) ; Needs LF a l s o
130 addq .w #1 , d2 ; Update c o u n t f o r t h e CR

Listing 4.7: Ql2win: Adding a CR

It is possible that the file we are reading is already in Windows format. Before we go ahead and
write a carriage return character just before the linefeed, we better check! If the character is a
carriage return, we jump off to Listing 4.8 to write the line out unchanged.

Assuming the file is not already in Windows format, we replace the linefeed at -1(A1) with a
carriage return and then add in a new linefeed at (A1). This is why we made the buffer big enough
for an extra 2 characters, to give us room to add in the required carriage return.

As we have added in an additional character to the buffer, we need to update D2.W which currently
holds the number of bytes we read in. This is used to determine how many bytes will be written to
the destination file, which coincidentally enough, happens to be where we drop in next; to Listing
4.8.

131 ;−−
132 ; Wr i t e o u t t h e c o n t e n t s o f t h e b u f f e r .
133 ;
134 ; D0 = 7 (i o _ s s t r g) E r r o r code
135 ; D1 .W Bytes w r i t t e n t o c h a n n e l
136 ; D2 .W = B u f f e r S i z e P r e s e r v e d
137 ; D3 .W = t i m e o u t . P r e s e r v e d
138 ; A0 . L = Channel ID . P r e s e r v e d
139 ; A1 . L = S t a r t o f b u f f e r . Updated b u f f e r (A1 + D2 .W)
140 ;−−
141 p u t L i n e
142 moveq # i o _ s s t r g , d0 ; Send s t r i n g s
143 movea . l a5 , a0 ; Des t c h a n n e l i d
144 movea . l a3 , a1 ; Wr i t e b u f f e r
145 t r a p #3 ; Do i t
146 t s t . l d0 ; OK?
147 beq . s readLoop ; Yes , keep go ing
148 b r a . s e r r o r E x i t ; No .

Listing 4.8: Ql2win: putLine

The code at putLine uses io_sstrg to write data from a buffer to a channel. The number of bytes
is determined by D2.W. The required registers are set up by copying in those required from our

18 Chapter 4. QL2WIN

constants where they have been sitting, waiting their turn of action! The remainder of the code, as
seen in Listing 4.9, handles errors and exiting from the utility when all is done.

149 ;−−
150 ; No e r r o r s , e x i t q u i e t l y back t o SuperBASIC .
151 ;−−
152 a l l D o n e
153 moveq #0 , d0
154
155 ;−−
156 ; We have h i t an e r r o r so we copy t h e code t o D3 t h e n e x i t v i a
157 ; a f o r c e d remova l o f t h i s j o b . EXEC_W/EW w i l l d i s p l a y t h e
158 ; e r r o r i n SuperBASIC , b u t EXEC/EX w i l l n o t .
159 ;−−
160 e r r o r E x i t
161 move . l d0 , d3 ; E r r o r code we want t o r e t u r n
162
163 ;−−
164 ; K i l l m ys e l f when an e r r o r was d e t e c t e d , o r a t EOF .
165 ;−−
166 s u i c i d e
167 moveq # m t _ f r j o b , d0 ; Th i s j o b w i l l d i e soon
168 moveq #me , d1
169 t r a p #1

Listing 4.9: Ql2win: Exit

There’s not much to see here. We arrive at allDone when we hit End Of File on the input file
and at errorExit if any errors were detected. The job then commits suicide by removing itself
from the system, returning any error codes in D3 as required. These errors will be seen only if
you executed the utility with the EXEC_W or EW commands. EXEC and EW do not wait for the job to
complete so cannot know in advance what, if any, errors will occur.

Finally, we have Listing 4.10, which is where we define the buffer which will be used to read data
into from the source file, and write data out of to the destination file.

As previously mentioned, the buffer is two bytes larger (although it only needs one) than we tell
QDOSMSQ as we need that extra one byte to insert a carriage return character, if necessary.

170 ;−−
171 ; Read / w r i t e b u f f e r . The b u f f e r i s 2 b y t e s l o n g e r t h a n we need
172 ; a s t h e r e needs t o be room t o i n s e r t t h e r e q u i r e d CRLF i n
173 ; p l a c e o f t h e LF .
174 ;−−
175 b u f f S i z e equ 64*2 ; B u f f e r S i z e
176 b u f f e r ds . b b u f f S i z e +2 ; B u f f e r

Listing 4.10: Ql2win: Buffer

4.2 Filter Chains

As mentioned already, this is a YAF. It checks that you supply exactly two channels or file names
on the command line and if it doesn’t find exactly two, it will exit with a bad parameter error. I
was thinking “what if I wanted to check my code was working and pass the output to another filter,
would that work?” I just tried it out just to see.

4.2 Filter Chains 19

I was working on the assumption that Tony Tebby et al, had been smart enough3 to ensure that
chains of filter programs would be set up correctly by the EXEC_W or EW commands and things
would just work. My first attempt was this:

EX ram1_ql2win_bin , ram1_ql_text_file TO ram1_hexdump_bin , #1

It did indeed work as expected, the input file, ram1_ql_text_file, was passed into the ql2win
filter and had carriage returns added where necessary. The output from that filter was written
directly to the input channel of the hexdump filter, thanks to the TO separator, from where, the
output was displayed on screen in channel 2.

This was extremely handy for testing as I could see the carriage returns added in the correct places
without having to create and open additional files.

Of course, lots of YAFs can be strung together to create the final output. Here’s another silly
example:

EX ram1_ql2win_bin , ram1_ql_text_file TO ram1_win2ql_bin TO
=⇒ ram1_hexdump_bin , #1

That’s all one command by the way. The text file in QL format is filtered to Windows format and
then passed through YAF to remove the newly added carriage returns and finally, for now, displayed
on screen in hexadecimal. I used this to ensure that the output file from my two filters was identical
to the text file used as the input to the test.

Once again, the TO separator has made sure that there are at least an input and an output channel for
the filter in the chain, even though there appears to be none.

3And, indeed, they were smart enough!

5. Win2QL

So that’s a utility to convert files created on the QL (or Linux!) into a format that Windows is happy
with. Admittedly, even Notepad these days is able to cope with QL/Linux line endings, but it’s nice
to have the correct format I suppose.

Win2ql is a utility, a YAF, to convert from Windows format text files to QL format text files. It
reads each line of the input file, strips off the carriage returns that it finds immediately prior to a
linefeed, and writes out the adjusted buffer to the output file.

The vast majority of the code is exactly the same as discussed in the previous chapter so most of
what was described there is the same and is not discussed further.

The code in the download is obviously the full utility, but for the rest of this chapter, only the
changes in the file win2ql_asm will be discussed.

5.1 Changes From Ql2win

The first difference is in the comments at the top of the code file. Listing 4.1 in the previous chapter
has been slightly amended, but only as far as the comments are concerned, none of the equates are
affected. Listing 5.1 shows the new comments.

1 ;−−
2 ; WIN2QL :
3 ;
4 ; Th i s f i l t e r c o n v e r t s Windows l i n e e n d i n g s t o QL or Linux
5 ; f o r m a t .
6 ;
7 ; EX win2q l_b in , i n p u t _ f i l e , o u t p u t _ f i l e _ o r _ c h a n n e l
8 ;−−
9 ; 2 1 / 0 2 / 2 0 2 1 NDunbar C r e a t e d f o r QDOSMSQ Assembly M a i l i n g L i s t

10 ;−−
11 ; (c) Norman Dunbar , 2021 . P e r m i s s i o n g r a n t e d f o r u n l i m i t e d use

22 Chapter 5. Win2QL

12 ; o r abuse , w i t h o u t a t t r i b u t i o n b e i n g r e q u i r e d . J u s t e n j o y !
13 ;−−

Listing 5.1: Win2ql: Comments

The next change is in the job name. Listing 5.2 shows the new job header with the amended job
name. The line numbers should, hopefully, match those in the listings being changed, those from
Ql2win.

35 ; ==
36 ; Here b e g i n s t h e code .
37 ;−−
38 ; S t a c k on e n t r y :
39 ;
40 ; $06 (a7) = Outpu t f i l e c h a n n e l i d .
41 ; $02 (a7) = Source f i l e c h a n n e l i d .
42 ; $00 (a7) = How many c h a n n e l s ? Should be $02 .
43 ; ==
44 s t a r t
45 b r a . s c h e c k S t a c k
46 dc . l $00
47 dc .w $4afb
48 name
49 dc .w name_end−name−2
50 dc . b ’WIN2QL’
51 name_end equ *
52
53 v e r s i o n
54 dc .w vers_end−v e r s i o n −2
55 dc . b ’ V e r s i o n 1 . 0 0 ’
56 v e r s _ e n d equ *

Listing 5.2: Win2ql: Job Header

There’s a large gap before we hit the next change. Listing 4.7 changes to the code shown in Listing
5.3.

120 ;−−
121 ; We have r e a d a t l e a s t t h e end of a l i n e and have t h e LF a t
122 ; t h e c o r r e c t p l a c e i n t h e b u f f e r . I f t h e c h a r a c t e r b e f o r e t h e
123 ; LF i s a CR remove i t and w r i t e out , o t h e r w i s e j u s t w r i t e o u t
124 ; what we have , i t ’ s n o t i n Windows f o r m a t .
125 ;−−
126 cmpi . b # cr ,−2(a1) ; Windows f o r m a t ?
127 bne . s p u t L i n e ; No , w r i t e o u t what we have
128 move . b # l f ,−2(a1) ; Rep lace CR wi th LF
129 subq .w #1 , d2 ; Update c o u n t f o r t h e m i s s i n g CR

Listing 5.3: Win2ql: Removing a CR

As before, in Ql2win, we check if the character prior to the trailing linefeed is a carriage return. In
this case, we are expecting it to be found, but if not, we can assume that this line, at least, is not in
Windows format and skip off to writing the line to the output channel.

If we did find a carriage return, all we have to do is overwrite it with a linefeed and adjust the line
length in D2.W to account for a single character less in the buffer.

The rest of the code is identical to Ql2win and has been discussed already.

6. Circular Buffers

A circular buffer is a device whereby data are written to it in order and removed from it in the
same order – it’s a First In, First Out queue, or FIFO, in other words. It is named circular because
when data are written to the last location, the next byte stored will be at the beginning – as if the
two ends of the buffer are joined together in, well, a circle! Wikipedia has a good description at
https://en.wikipedia.org/wiki/Circular_buffer if you wish to read further.

I learned about them when writing my book Arduino Software Internals1, while looking at the code
for the Serial interface.

The application code can write data to the buffer, and as long as it doesn’t get full, the USART code
can be pulling data out of the same buffer and sending it out onto the serial interface pins. Is this
useful for the QL I hear you think? Who knows, but I thought it would be an interesting exercise to
convert from C++ to Assembly Language, just for fun2.

The plan is, that a buffer can be allocated at a certain size, and then used and abused as required.
As the code is required to use the Modulus operator to ensure that various calculations wrap around
properly, the only restrictions of these buffers are:

• The size requested must be a power of two;
• The size requested must be a minimum of 2 bytes;
• The size requested must be a maximum of 32768 bytes;

Other than that, the sky is the limit!

1https://www.apress.com/gb/book/9781484257890 and https://www.amazon.co.uk/Arduino-Software-Internals-
Complete-Language/dp/1484257898

2For certain values of “fun” perhaps!

https://en.wikipedia.org/wiki/Circular_buffer
https://www.apress.com/gb/book/9781484257890
https://www.amazon.co.uk/Arduino-Software-Internals-Complete-Language/dp/1484257898
https://www.amazon.co.uk/Arduino-Software-Internals-Complete-Language/dp/1484257898

24 Chapter 6. Circular Buffers

6.1 How Big is my Buffer?

You might think that a buffer is as big as requested? Assuming the request was for a valid power of
two in size of course. A foible of circular buffers of this format is that they always end up losing a
single byte of storage. Why is this?

Imagine a brand new empty buffer, let’s say it’s only two bytes in size3.

As the buffer has just been allocated, head = tail = 0 and the buffer is officially empty. Nothing
has been written to the buffer and nothing is available to be read. So far so good!

The application wants to write a byte to the buffer, so:

• Increment the head offset by 1. Head = 1.
• Head MOD 2, which is required to account for any wrap around, leaves Head = 1.
• Compare with the tail offset, 0. They are different, so the buffer has space available.
• Store the data byte at offset 1.
• Update the head offset in the buffer header.

This executes successfully and on return, head = 1 and tail = 0. The buffer has one byte in the data
area. As you can see, the head pointer was incremented before storing the data byte and the new
byte stored at that location. This means that currently, byte zero in the data area has been skipped
over. Bear this in mind.

The application now wants to write a second byte to the buffer. The execution of this proceeds as
follows:

• Increment the head offset by 1. Head = 2.
• Head MOD 2, leaves Head = 0
• Compare with the tail offset, 0. They are equal, so the buffer has no space available!
• The second byte cannot be stored in the buffer!

So, we allocated a two byte buffer by can only store a single byte in it. There are other buffer
structures which store the count of data bytes written and adjust this on each read or write, these
buffers have the full compliment of space available for the overhead of a bit of extra processing.

Ok, why are we comparing the incremented head offset with the unincremented tail offset? If we
didn’t, then the test would have to be whether the two offsets were equal, which means we can’t
tell if the buffer is empty or full.

6.2 Buffer Structure

The buffer is allocated as a chunk of memory where the size asked for by the user must be a power
of two with a maximum size of 32,768 bytes which happens to be the largest power that fits into a
word. Why a word? The buffer is made up of two parts, the data area of the requested size and a 10
byte header added to the front of the data area. The header is used to hold information about the
buffer – its size plus the head and tail offsets into the data area – and these are word sized.

The 10 byte header stores the following information about the buffer:

• A buffer identifier, currently “cB60”, which is used to identify that the address in A3.L is
indeed a circular buffer.

• The data size. This is the actual size of the data area allocated for the buffer and does not
include the 10 bytes added for the header. In all the code, A3.L points at this address, bit at

3Because that means I have less typing to do in explaining it!

6.3 The Buffer Handling Code 25

the buffer identifier.
• The head offset. This defines the offset into the data area where the most recent byte was

written to the buffer. The head will be adjusted to the next offset when a new byte is to be
added to the buffer.

• The tail offset. This defines the offset into the data area where the most recent byte was read
from the buffer. The tail will be adjusted to locate the next offset, when the next request for a
byte is processed.

The structure of our circular buffers will be as shown in Figure 6.1.

“cB60” cbSize cbHead cbTail cbData

Figure 6.1: Circular Buffer structure

You can see the simplicity of the whole thing, it’s just the data area with the afore mentioned 6 byte
header.

6.3 The Buffer Handling Code

The code functions we will create for this article will expect a buffer address to be passed in A3.L
and it is required that the address pointed top by A3.L is that of the cbSize field in the buffer.
However, as the initialisation of each function will retrieve the fields required from the buffer
header, A3.L will end up pointing at the start of the data area for the body of the function. Because
of this, I need to use some negative offsets when the code needs to refer to the header fields.

1 c b S i z e equ −6 ; How b i g i s my b u f f e r ’ s d a t a a r e a ?
2 cbHead equ −4 ; Where i s my head ? L a s t b y t e i n s e r t e d .
3 c b T a i l equ −2 ; Where i s my t a i l ? L a s t b y t e removed .
4
5 bu f f I D equ −4 ; B u f f e r i d e n t i f i e r o f f s e t from c b S i z e .
6 h d r S i z e equ 10 ; S i z e o f b u f f e r h e a d e r
7
8 b u f f e r I D equ " cB60 " ; B u f f e r i d e n t i f i e r
9

10 ; Not r e q u i r e d f o r GWASS/GWASL b u t maybe f o r QMAC.
11 ;MT_ALCHP equ $18 ; A l l o c a t e common heap
12 ;MT_RECHP equ $19 ; R e l e a s e common heap

All the code for this article can be found in the code files supplied in the download. The various
functions explained below are found in cBuffer_asm.

6.3.1 Allocate a New Buffer

Allocating a new circular buffer is a simple matter of taking the requested space, rounding it up
to the next power of two, add making it a long word to fit into D1 and adding the 6 extra bytes
required for the header. A chunk of common heap is then requested from QDOSMSQ and if it was
allocated, the header fields are filled in.

Listing 6.1 is the code to allocate a new circular buffer. This code calls the checkSize procedure
to potentially adjust the buffer size to a power of two. That code can be seen in Listing 6.2.

1 ;−−

26 Chapter 6. Circular Buffers

2 ; A l l o c a t e B u f f e r
3 ;−−
4 ; A l l o c a t e s memory f o r a new c i r c u l a r b u f f e r . The s i z e p a s s e d
5 ; must be a power o f 2 and c a n n o t be l a r g e r t h a n a word . Th i s
6 ; l i m i t s a b u f f e r t o a maximum s i z e o f 32 ,768 b y t e s . 1 o f which
7 ; w i l l be u n u s a b l e .
8 ;
9 ; ENTRY:

10 ;
11 ; D0 .W = S i z e o f b u f f e r . Power o f two , 32768 maximum .
12 ;
13 ; EXIT :
14 ;
15 ; D0 . L = E r r o r code . (From MT_ALCHP)
16 ; = 0 i f t h e b u f f e r was c r e a t e d .
17 ; <>0 i f t h e b u f f e r f a i l e d t o c r e a t e .
18 ;
19 ; A3 . L = B u f f e r a d d r e s s . (A3 −> c b S i z e i n t h e b u f f e r .)
20 ;
21 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
22 ;−−
23 a l l o c a t e B u f f e r
24 movem . l d1−d3 / a0−a2 ,−(a7) ; Save working r e g i s t e r s
25 b s r . s c h e c k S i z e ; R e t u r n s D0 . L as a power o f 2
26 move . l d0 , d1 ; D1 . L = s p a c e r e q u i r e d
27 move .w d1 ,−(a7) ; Save rounded r e q u e s t e d s i z e
28 addq . l # h d r S i z e , d1 ; A d j u s t f o r h e a d e r s p a c e
29 moveq # mt_alchp , d0 ; A l l o c a t e common heap
30 moveq #−1,d2 ; C u r r e n t j o b i s owner
31 t r a p #1
32 move .w (a7) + , d1 ; R e s t o r e rounded s i z e
33 t s t . l d0 ; Do we a l l o c a t e some heap ?
34 bne . s a b E x i t ; No
35
36 move . l a0 , a3 ; B u f f e r a d d r e s s i n A3 . L
37 move . l # b u f f e r I D , (a3) + ; B u f f e r i d e n t i f i e r a t −4(a3)
38 subq .w # h d r S i z e , d1 ; S i z e o f b u f f e r d a t a a r e a
39 move .w d1 , (a3) ; S e t c b S i z e
40 c l r . l 2 (a3) ; S e t cbHead = c b T a i l = 0
41
42 a b E x i t
43 movem . l (a7) + , d1−d3 / a0−a2 ; R e s t o r e working r e g i s t e r s
44 r t s

Listing 6.1: Allocating a circular buffer

All registers except D0 and A3 are preserved by the allocate Buffer routine. The code is called
with the required buffer size in D0.W and if successful, D0 will hold zero and A3.L will return the
buffer address. In the case of an error, D0 will return the error code from MT_ALCHP and A3 will be
unchanged.

Register D1.W is stacked before being adjusted for the header size, and is restored after the trap.
The trap call to allocate common heap returns the number of bytes allocated in D1.L, however, this
is not necessarily the same as the number of bytes requested as the requested size will be rounded
up by QDOSMSQ.

6.3 The Buffer Handling Code 27

When testing, I asked for an 8 byte buffer which works out at 18 bytes with the header included, I
received a chunk of common heap which was 48 bytes in size. That messed up the cbSize field in
the header and was an interesting bug to track down! By saving D1.W I can set the header to the
correct buffer size.

6.3.2 Buffer Size Adjustments

In order to protect the programmer from him or herself, the allocation of a buffer will check that
the size requested is within range. The code in the checkSize routine takes the value in D0.W and
rounds it up to the next power of two, unless its already a power. The resulting value, in D0.L is
then adjusted to a maximum of 32768 or a minimum of 8 bytes.

The code should be reasonably familiar as it was in Issue 8 of this somewhat irregular eMagazine.
Listing 6.2 shows the code to check and make the adjustments as necessary.

1 ;−−
2 ; Check S i z e
3 ;−−
4 ; Check t h e r e q u e s t e d b u f f e r s i z e i n D0 and round i t up t o t h e
5 ; n e x t l a r g e s t power o f two i f n o t a l r e a d y a power . I f l e s s
6 ; t h a n 8 b y t e s , make i t 8 . I f more t h a n 32768 , t h e n make i t
7 ; 32768 .
8 ;
9 ; ENTRY:

10 ;
11 ; D0 .W = S i z e o f b u f f e r .
12 ;
13 ; EXIT :
14 ;
15 ; D0 . L = P o t e n t i a l l y a d j u s t e d b u f f e r s i z e .
16 ; D1 . L = D0 . L .
17 ;
18 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
19 ;−−
20 ; Algo r i t hm :
21 ;
22 ; Value = Value − 1
23 ; REPEAT LOOP
24 ; Temp = Value & (Value − 1)
25 ; I f Temp = 0 , r e t u r n min (max (2* Value , 8) , 32768)
26 ; Value = Temp
27 ; END LOOP
28 ;
29 ; D1 . L = Value
30 ; D0 . L = Temp
31 ;−−
32 c h e c k S i z e
33 moveq #0 , d1
34 move .w d0 , d1 ; D1 . L = Value
35
36 subq . l #1 , d1 ; In c a s e Value i s a power a l r e a d y
37
38 csLoop
39 move . l d1 , d0 ; Temp = Value
40 subq . l #1 , d0 ; Temp = (Value − 1)

28 Chapter 6. Circular Buffers

41 and . l d1 , d0 ; Temp = Value & (Value − 1)
42 beq . s csRange ; I f Temp = Zero = no more s e t b i t s
43 move . l d0 , d1 ; Value = Temp
44 bne . s csLoop ; Keep go ing
45
46 csRange
47 l s l . l #1 , d1 ; Value = Value * 2
48 move . l d1 , d0 ; To r e t u r n t h e new v a l u e
49
50 csMin
51 cmpi . l #7 , d0 ; Minimum i s 8
52 b h i . s csMax ; B i gge r t h a n 7 i s ok
53 moveq #8 , d0 ; R e s u l t i s 8
54 b r a . s c s E x i t ; Done
55
56 csMax
57 cmpi . l #$8000 , d0 ; Maximum i s 32768
58 b l e . s c s E x i t ; Equal / S m a l l e r t h a n 32768
59 move . l #$8000 , d0 ; R e s u l t i s 32768
60
61 c s E x i t
62 r t s

Listing 6.2: Adjusting a buffer’s size

In order to test if a number is a power of two, start with one less than the number – in case it’s
already a power – then repeatedly assign the value with (value AND (value−1)) and when the
result is zero, you have the power of two below the original number, to get the next one, multiply
by two.

The result, in D0.L, is now a power of two. Given that a buffer size of less than 8 is most likely a
waste of time, the buffer size is rounded up to 8 if smaller. If the size exceeds the maximum that a
word can hold, 32768, it is adjusted down to 32768.

6.3.3 Free a Buffer

Listing 6.3 shows the code to free a circular buffer after it is no longer required. Obviously in a
job, this is not strictly necessary as QDOSMSQ will tidy up the jobs allocated heaps space on exit,
however, it’s best to be neat and tidy, plus, deallocating the space when no longer needed can free
the space for other tasks to utilise.

1 ;−−
2 ; F ree B u f f e r
3 ;−−
4 ; D e a l l o c a t e s memory f o r a c i r c u l a r b u f f e r . The b u f f e r Id i s
5 ; c l e a r e d t o h o p e f u l l y p r e v e n t d e l e t e d b u f f e r s from b e i n g used .
6 ;
7 ; ENTRY:
8 ;
9 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)

10 ;
11 ; EXIT :
12 ;
13 ; D0 . L = E r r o r code .
14 ; = 0 i f t h e b y t e was added t o t h e b u f f e r .
15 ; = 1 i f t h e b u f f e r i s f u l l , so D1 was n o t added .

6.3 The Buffer Handling Code 29

16 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
17 ;
18 ; A3 . L = 0 . B u f f e r now i n v a l i d .
19 ;
20 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
21 ;−−
22 f r e e B u f f e r
23 b s r . s b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
24 movem . l d0−d3 / a0−a2 ,−(a7) ; Save working r e g i s t e r s
25 move . l #0 , bu f f I D (a3) ; D e l e t e b u f f e r i d
26 move . l a3 , a0 ; B u f f e r a d d r e s s t o r e c l a i m
27 moveq #MT_RECHP, d0 ; R e l e a s e common heap
28 t r a p #1
29
30 f b E x i t
31 movem . l (a7) + , d0−d3 / a0−a2 ; R e s t o r e working r e g i s t e r s
32 move . l #0 , a3 ; B u f f e r d e l e t e d .
33 r t s

Listing 6.3: Freeing a circular buffer

There’s not a lot to explain here, the base address of the buffer is passed in A3 as usual, and is
simply copied to A0 in order for the trap to release common heap space, to work. releasing a heap
never fails with any errors, so none are checked for.

All registers, except A3, are preserved by this code.

6.3.4 Buffer Check

Before operating on a buffer, it’s wise to attempt a bit of validation to try and prevent things going
awry when the code starts accessing areas of RAM which are not actually circular buffers!

The address of a buffer, as previously discussed, points at the size word in the header, however, just
before the size word is an identifier which is hard coded to be the text “cB60” – for no real reason –
and the bufferCheck procedure, shown in Listing 6.4, checks that this long word does exist in the
correct place.

If, for some unknown reason, the identifier is not found, then something has gone wrong. D0.L
is set to 2 to indicate an invalid buffer, and the callers return address is removed from the stack
allowing the code to return to the caller’s caller with the error code.

1 ;−−
2 ; B u f f e r Check
3 ;−−
4 ; A b u f f e r a d d r e s s i n A3 i s checked f o r an a t t e m p t a t v a l i d i t y
5 ; i n t h a t an a d d r e s s o f z e r o i s c o n s i d e r e d i n v a l i d , whereas any
6 ; o t h e r v a l u e i s p o s s i b l y v a l i d ! Hard t o d e t e r m i n e , I know .
7 ;
8 ; Any f u n c t i o n t h a t m a n i p u l a t e s b u f f e r s s h o u l d (!) BSR t o h e r e
9 ; b e f o r e do ing any r e g i s t e r s a v i n g e t c . E lse , c a r n a g e w i l l be

10 ; t h e r e s u l t !
11 ;
12 ; NOTE: The r e t u r n i s t o t h e p r e v i o u s c a l l e r on e r r o r . Th i s
13 ; code w i l l on ly r e t u r n t o t h e c a l l e r i f t h e b u f f e r i s
14 ; non−z e r o . So :
15 ;

30 Chapter 6. Circular Buffers

16 ; codeXxx c a l l s addByte , f o r example .
17 ; addByte c a l l s h e r e t o check b u f f e r .
18 ; I f A3 i s zero , r e t u r n t o codeXxx wi th D0 = 2 .
19 ; Else , r e t u r n t o addByte t o add a b y t e .
20 ;
21 ; ENTRY:
22 ;
23 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)
24 ;
25 ; EXIT :
26 ;
27 ; D0 . L = E r r o r code .
28 ; = 2 The b u f f e r i s i n v a l i d .
29 ;−−
30 b u f f e r C h e c k
31 cmpi .w # b u f f e r I D ,−4(a3) ; I s t h i s a b u f f e r ?
32 beq . s b c E x i t ; B u f f e r ok , r e t u r n t o c a l l e r
33 moveq . l #2 , d0 ; B u f f e r i s bad
34 addq . l #4 , a7 ; C a l l e r a d d r e s s i g n o r e d
35
36 b c E x i t
37 r t s

Listing 6.4: Validating a buffer address

6.3.5 Write Data to a Buffer

When adding a byte to a buffer, the buffer cannot be full up, that indicates an error condition. If the
buffer has free space, then the head offset is adjusted to the next free space and the data byte stored
at that offset into the data area of the buffer.

Listing 6.5 shows the code for the addByte procedure..

1 ;−−
2 ; Add Byte
3 ;−−
4 ; Adds one b y t e t o a c i r c u l a r b u f f e r .
5 ;
6 ; ENTRY:
7 ;
8 ; D1 . B = Byte t o be added .
9 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)

10 ;
11 ; EXIT :
12 ;
13 ; D0 . L = E r r o r code .
14 ; = 0 i f t h e b y t e was added t o t h e b u f f e r .
15 ; = 1 i f t h e b u f f e r i s f u l l , so D1 was n o t added .
16 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
17 ;
18 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
19 ;−−
20 addByte
21 b s r . s b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
22 movem . l d1 / d4−d5 / a3 ,−(a7) ; Save working r e g i s t e r s
23

6.3 The Buffer Handling Code 31

24 a b I s F u l l
25 b s r . s i s F u l l ; P r e s e r v e s a l l r e g i s t e r s
26 beq . s abFul lUp ; Yes , b a l e o u t
27
28 move .w (a3) + , d5 ; S i z e o f b u f f e r
29 subq .w #1 , d5 ; We need one l e s s t h a n s i z e
30 move .w (a3) + , d4 ; Where i s t h e head ?
31 addq . l #2 , a3 ; Skip ove r t h e t a i l , n o t used
32 addq .w #1 , d4 ; New head p o i n t e r
33 and .w d5 , d4 ; Wrap around i f n e c e s s a r y
34 move . b d1 , (a3 , d4 .w) ; S t o r e new b y t e
35 move .w d4 , cbHead (a3) ; New head saved
36 moveq #0 , d0 ; One b y t e added
37 b r a . s a b E x i t ; Done , no e r r o r s .
38
39 abFul lUp
40 moveq #1 , d0 ; B u f f e r f u l l , can ’ t add D1
41
42 a b E x i t
43 movem . l (a7) + , d1 / d4−d5 / a3 ; R e s t o r e working r e g i s t e r s
44 r t s

Listing 6.5: Writing data to a buffer

The code starts by calling the isFull routine to determine if the buffer is full. If D0 is returned as
zero, then the buffer is indeed full and we bale out with an error code in D0. We cannot add this
byte to the buffer.

D5 is then set to the buffer size minus 1. We use this to MOD the head offset when it is incremented,
to enable it to wrap around from the final byte to the start byte, if required. The head offset is
copied into D4 and as we don’t need the tail, A3 is incremented past it to point at the start of the
data area of the buffer. The data byte in D1 is then stored in the buffer at the new head position.

The new head offset is written back to the correct location in the buffer header, which is at a negative
offset from the current value in A3.

The sharp eyed and quick brained amongst you may be thinking, “Hmmmm, what about that
move.b d1,(a3,d4.w) instruction, to store the new data byte, as the index register is a word, surely it
will be sign extended? The maximum buffer is 32768 after all and that’s got a sign bit of 1 after
all.”

Funnily enough, I thought that too for a bit, however, the absolute maximum value that the head or
tail offsets can take is one less than the buffer size – buffer offsets are from zero – so that makes
32767 or $7FFF the maximum, and that doesn’t have a leading 1 in the sign bit, so all is well.

6.3.6 Read Data from a Buffer

Reading data from a buffer is quite simple. If the buffer is empty, then there’s nothing to do
as there’s nothing to actually read. Assuming the buffer does have data, then the tail offset is
incremented, wrapping around if necessary, and the byte at that offset is obtained. The new tail
pointer is then stored in the buffer header.

Listing 6.6 shows the getByte code.

1 ;−−
2 ; Get Byte

32 Chapter 6. Circular Buffers

3 ;−−
4 ; Gets one b y t e from a c i r c u l a r b u f f e r .
5 ;
6 ; ENTRY:
7 ;
8 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)
9 ;

10 ; EXIT :
11 ;
12 ; D0 . L = E r r o r code .
13 ; = 0 i f t h e b y t e was r e t r i e v e d from t h e b u f f e r .
14 ; = 1 i f t h e b u f f e r i s empty .
15 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
16 ;
17 ; D1 . B = The r e t r i e v e d byte , i f t h e b u f f e r was n o t empty .
18 ; = P r e s e r v e d i f t h e b u f f e r was empty .
19 ;
20 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
21 ;−−
22 g e t B y t e
23 b s r . s b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
24 movem . l d4−d6 / a3 ,−(a7) ; Save working r e g i s t e r s
25
26 gbIsEmpty
27 b s r . s i sEmpty ; I s t h e b u f f e r empty ?
28 beq . s gbEmpty ; Yes , b a l e o u t
29
30 move .w (a3) + , d5 ; S i z e o f b u f f e r
31 subq .w #1 , d5 ; We need one l e s s t h a n s i z e
32 addq . l #2 , a3 ; Skip ove r t h e head
33 move .w (a3) + , d6 ; Get t h e t a i l ?
34 addq .w #1 , d6 ; New t a i l p o i n t e r
35 and .w d5 , d6 ; Wrap around i f n e c e s s a r y
36 move . b (a3 , d6 .w) , d1 ; F e t c h b y t e
37 move .w d6 , c b T a i l (a3) ; New t a i l s aved
38 moveq #0 , d0 ; One b y t e r e t r i e v e d
39 b r a . s g b E x i t ; Done , no e r r o r s
40
41 gbEmpty
42 moveq #1 , d0 ; B u f f e r empty , can ’ t r e t r i e v e
43
44 g b E x i t
45 movem . l (a7) + , d4−d6 / a3 ; R e s t o r e working r e g i s t e r s
46 r t s

Listing 6.6: Reading data from a buffer

The code begins by calling out to isEmpty and if the buffer is empty, bales out setting D0 to 1 to
show a read from an empty buffer was attempted.

The buffer size is copied into D5.W and decremented. This is used later to MOD the new tail offset
to make sure it wraps around, if required. The head offset is not required so is skipped over leaving
A3.L pointing at the tail, which is read into D6.W. The tail offset is then incremented, wrapping as
appropriate to give the offset into the data area that we will read from.

The data byte at the calculated offset is copied into D1 and the new tail offset stored in the buffer’s

6.3 The Buffer Handling Code 33

header. D0 is cleared to show that no errors occurred.

6.3.7 Is the Buffer Full?

The buffer is full up whenever the tail offset is 1 byte larger than the head. The next data byte to be
written to the buffer will be stored at:

head +1 MOD bu f f er_size

The tail offset, whatever it currently happens to be, is where the most recent byte was read from the
buffer. As previously explained, we have to compare the incremented head offset with the current
tail offset or we will be unable to determine if the buffer is empty or full when both are equal.

It is this increment to the head offset which causes the loss of a single byte of storage in the buffer.

1 ;−−
2 ; I s F u l l ?
3 ;−−
4 ; Checks i f t h e b u f f e r p a s s e d i n A3 i s f u l l . A b u f f e r i s f u l l
5 ; when (Head + 1) == T a i l .
6 ;
7 ; ENTRY:
8 ;
9 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)

10 ;
11 ; EXIT :
12 ;
13 ; D0 . L = Re t u r n code .
14 ; = 0 i f t h e b u f f e r i s f u l l . Z s e t .
15 ; = 1 i f t h e b u f f e r i s n o t f u l l . Z c l e a r .
16 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
17 ;
18 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
19 ;−−
20 i s F u l l
21 b s r b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
22 movem . l d4−d5 / a3 ,−(a7) ; Save t h e worke r s
23 move .w (a3) + , d4 ; Get t h e b u f f e r s i z e
24 subq .w #1 , d4 ; Minus 1 f o r MOD
25 move .w (a3) + , d5 ; Get t h e head o f f s e t
26 addq .w #1 , d5 ; Next head o f f s e t
27 and .w d4 , d5 ; MOD b u f f e r s i z e
28 cmp .w (a3) , d5 ; Same as t a i l ?
29 beq . s i f F u l l ; B u f f e r i s f u l l
30 moveq #1 , d0 ; Not f u l l
31 b r a . s i f E x i t ; Ba le o u t
32
33 i f F u l l
34 moveq #0 , d0 ; B u f f e r i s f u l l
35
36 i f E x i t
37 movem . l (a7) + , d4−d5 / a3 ; R e s t o r e t h e worke r s
38 r t s

Listing 6.7: Is buffer full

34 Chapter 6. Circular Buffers

The code is simple enough, the buffer’s size is copied into D4.W and decremented ready for the
MOD to take place. The head offset is copied into D5.W and incremented. The new value is ANDed
with D4.W to cope with t he new value needing to wrap around to the beginning of the buffer. The
new value is compared with the tail offset and if they are equal, the buffer is full. This is indicated
by a return value of zero in D0. Returning 1 in D0 indicates that the buffer is not full.

6.3.8 Is the Buffer Empty?

This is rather easy. If the head pointer equals the tail pointer, then the buffer is currently empty. For
a brand new buffer, both offsets are zero and the buffer is definitely empty.

If, on the other hand, 10 bytes had been added since new, and none read back yet, the head will be
10 while the tail will be still zero. Don’t I mean 9 for the head? No, definitely 10 because while the
head (and tail) starts at zero in a new buffer, it is incremented by 1 before storing a new byte as
explained above. The first byte added will be at offset 1 for a new buffer, the second at offset 2 and
so the tenth will be at offset 10.

After reading back the 10 bytes, the tail offset will also be at 10, so both are equal and the buffer is
indeed empty.

Interestingly, a new, empty, buffer need not have the head and tail offsets set to zero, it makes no
difference where they both point, provided they point at the same offset.

1 ;−−
2 ; I s Empty ?
3 ;−−
4 ; Checks i f t h e b u f f e r p a s s e d i n A3 i s empty . A b u f f e r i s empty
5 ; when Head == T a i l .
6 ;
7 ; ENTRY:
8 ;
9 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)

10 ;
11 ; EXIT :
12 ;
13 ; D0 . L = Re t u r n code .
14 ; = 0 i f t h e b u f f e r i s empty . Z s e t .
15 ; = 1 i f t h e b u f f e r i s n o t empty . Z c l e a r .
16 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
17 ;
18 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
19 ;−−
20 isEmpty
21 b s r b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
22 move .w 2(a3) , d0 ; Head o f f s e t
23 cmp .w 4(a3) , d0 ; Head = T a i l ?
24 beq . s ieEmpty ; Yes
25 moveq #1 , d0 ; Not empty
26 r t s
27
28 ieEmpty
29 moveq #0 , d0 ; No
30 r t s

Listing 6.8: Is buffer empty

6.3 The Buffer Handling Code 35

6.3.9 How Much Space is Used?

The used space in a buffer is calculated as:

(bu f f er_size+head− tail) MOD bu f f er_size

If we assume a buffer state as shown in Figure 6.2 we can see a simple example where 4 bytes of
data have been written to a new buffer but nothing has been read back yet. The first byte has an
unknown value as it was never written to since the buffer was created. The 4 bytes written are ‘A’,
’B’, ’C’ and ’D’.

cbSize cbHead cbTail cbData
8 4 0 ?tail A B C Dhead ? ? ?

Figure 6.2: Circular Buffer space used - simple example

This is an obvious one, there are 4 bytes used, we can see that plainly. And the calculation gives the
correct result:

(bu f f er_size+head− tail) MOD bu f f er_size

(8+4−0) MOD 8

12 MOD 8

And 12 MOD 8 is indeed 4.

How about when the buffer has been used for a while and the buffer state resembles Figure 6.3.

cbSize cbHead cbTail cbData
8 2 5 Y Z Ahead C D Etail F G

Figure 6.3: Circular Buffer space used - complex example

In this example, the last byte written was at offset 2 (head = 2), the ’A’, while the last byte read
back was at offset 5 (tail = 5), the ’E’. We can plainly see that the bytes F, G, Y, Z and A have yet
to be read and so must be included in the count, while the data bytes C, D and E have already been
read back and are thus classed as free space now.

(bu f f er_size+head− tail) MOD bu f f er_size

(8+2−5) MOD 8

5 MOD 8

And 5 MOD 8 is 5 and there are 5 unread bytes in the buffer – F, G, Y, Z and A.

Listing 6.9 shows the code to work out how much data is available in a buffer.

1 ;−−
2 ; Get Used
3 ;−−

36 Chapter 6. Circular Buffers

4 ; R e t u r n s t h e s p a c e used i n a b u f f e r . Th i s i s (s i z e + head −
5 ; t a i l) MOD s i z e .
6 ;
7 ; ENTRY:
8 ;
9 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)

10 ;
11 ; EXIT :
12 ;
13 ; D0 .W = Used s p a c e .
14 ; = 0 i f t h e b u f f e r i s empty . Z s e t .
15 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
16 ; <> 0 = used s p a c e . Z c l e a r .
17 ;
18 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
19 ;−−
20 ge tUsed
21 b s r b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
22 movem . l d5 / a3 ,−(a7) ; Save t h e worke r s
23
24 guIsEmpty
25 b s r . s i sEmpty ; I s b u f f e r empty ?
26 beq . s g u E x i t ; Yes , D0 = 0 , b a l e o u t
27
28 move .w (a3) + , d0 ; B u f f e r s i z e
29 move .w d0 , d5 ; B u f f e r s i z e a g a i n
30 subq .w #1 , d5 ; For MOD
31 add .w (a3) + , d0 ; Add on head
32 sub .w (a3) , d0 ; Minus t a i l
33 andw . l d5 , d0 ; MOD s i z e
34
35 g u E x i t
36 movem . l (a7) + , d5 / a3 ; R e s t o r e t h e worke r s
37 r t s

Listing 6.9: Buffer space used

If the buffer is empty, then we exit from the code with D0 holding zero. The buffer size is copied
into D0.W and D5.W. D5.W is then decremented ready for the MOD operation later. The current
head offset is added to D0.W and the tail offset is subtracted. D0.W is finally ANDed with D5.W to
obtain the final result for (bu f f er_size+head− tail) MOD bu f f er_size.

Can the results ever overflow a word sized register? No. The biggest buffer allowed is 32768 which
is $8000, in that buffer the maximum head offset to add on is 32767 or $7FFF, this gives 65535 or
$FFFF – so it all fits into a word before subtracting the tail offset, the smallest of which is zero.
The result must always fit into a word sized register, so we are good.

6.3.10 How Much Space is Free?

The space currently available in a buffer is calculated as:

bu f f er_size−1− space_used

Alternatively, substituting the formula for space used:

6.3 The Buffer Handling Code 37

bu f f er_size−1− ((bu f f er_size+head− tail) MOD bu f f er_size)

The code below in Listing6.10 does exactly this using the former formula but it could be rewritten
to use the full formula of course, but when half the work has been done already, it’s a shame to
repeat it!

1 ;−−
2 ; Get F ree
3 ;−−
4 ; R e t u r n s t h e s p a c e f r e e i n a b u f f e r . Th i s i s s i z e − 1 − used .
5 ;
6 ; ENTRY:
7 ;
8 ; A3 . L = B u f f e r a d d r e s s . (A3 = c b S i z e i n t h e b u f f e r .)
9 ;

10 ; EXIT :
11 ;
12 ; D0 . L = Space used i n t h e b u f f e r .
13 ; = 0 i f t h e b u f f e r i s f u l l . Z s e t a l s o .
14 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
15 ;
16 ; A l l o t h e r r e g i s t e r s a r e p r e s e r v e d .
17 ;−−
18 g e t F r e e
19 b s r b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
20 move . l a3 ,−(a7) ; Save t h e worker
21
22 gf I sEmpty
23 b s r . s ge tUsed ; D0 .W = used s p a c e
24 neg .w d0 ; n e g a t i v e used s i z e
25 add .w (a3) , d0 ; Add b u f f e r s i z e
26 subq .w #1 , d0 ; Minus t h e u n u s a b l e b y t e
27
28 g f E x i t
29 move . l (a7) + , a3 ; R e s t o r e t h e worker
30 r t s

Listing 6.10: Buffer free space

The code is quite simple here as well. D0.W is set to the amount of space used in the buffer, this is
then negated and the buffer size is added on. The single unusable byte is then subtracted to get the
final result.

6.3.11 Flushing Buffers

Listing 6.11 shows the code to flush, or empty, a buffer if this is required for any reason. The code
is very simple, it sets the head and tail offsets to zero in the buffer header thus quickly emptying the
buffer.

1 ;−−
2 ; F l u s h B u f f e r
3 ;−−
4 ; F l u s h e s a l l d a t a from t h e b u f f e r . Doesn ’ t o v e r w r i t e i t , on ly
5 ; s e t t h e Head = T a i l = 0 . The s i z e r e m a i n s t h e same .

38 Chapter 6. Circular Buffers

6 ;
7 ; ENTRY:
8 ;
9 ; A3 . L = B u f f e r t o f l u s h . (A3 = c b S i z e i n t h e b u f f e r .)

10 ;
11 ; EXIT :
12 ;
13 ; D0 . L = E r r o r Code
14 ; = 2 i f t h e b u f f e r a d d r e s s was i n v a l i d .
15 ; None .
16 ;
17 ; A l l r e g i s t e r s a r e p r e s e r v e d .
18 ;−−
19 f l u s h B u f f e r
20 b s r b u f f e r C h e c k ; Won’ t r e t u r n u n l e s s v a l i d
21 move .w #0,−cbHead (a3) ; −cbHead i s a c t u a l l y c b T a i l !
22 move .w #0,− c b T a i l (a3) ; −c b T a i l i s a c t u a l l y cbHead !
23 r t s

Listing 6.11: Flushing buffers

6.3.12 Incrementing Head and Tail Offsets

The various procedures explained above all increment their offsets for head and tail, on the fly,
rather than calling out to another subroutine. This is mainly because the increment code is pretty
small and it’s hardly worth calling a sub-routine to do the work.

Incrementing an offset is a simple case of:

(o f f set +1) MOD bu f f er_size

We need the MOD function as the offset has to wrap back to zero when we attempt to increment
past the end of the buffer.

This is another reason why the buffer size is required to be a power of two. When those values are
used, we can quickly MOD a value by ANDing with the buffer size minus 1 – as the code has been
doing throughout.

For example, if our buffer size is 8 bytes, then ANDing with 7 is effectively the MOD 8 operation
that we need. The offset into the buffer, head or tail, will always be from 0 to 7 inclusive. When we
increment from 7 to 8, we go outside the bounds of the buffer’s data area so we need to wrap back
to the start.

In binary 8 is 0000 1000 and 7 is 0000 0111. If we AND them together, we get 0000 0000 which is
exactly where we want to be, back at offset zero. Listing 6.12 shows an example of this in code
form, where we pick up the head pointer and increment it.

1 incHead
2 . . .
3 move .w (a3) + , d4 ; Get t h e b u f f e r s i z e
4 subq .w #1 , d4 ; Minus 1 f o r MOD
5 move .w (a3) + , d5 ; Get t h e head o f f s e t
6 addq .w #1 , d5 ; Next head o f f s e t
7 and .w d4 , d5 ; MOD b u f f e r s i z e

6.3 The Buffer Handling Code 39

8 . . .

Listing 6.12: Incrementing an offset using AND

If the buffer sizes could be any value, then we would be into the realms of having to divide and
take the remainder. Not that this is a huge problem, in fact, if you wish, you can rewrite the code to
allow for buffer sizes which are not powers of two, call it homework!

Listing 6.13 shows an example of incrementing the head offset using the DIVU instruction. This
requires that a long value in the destination register be divided by a word value in the source register.
The high word of the destination register will contain the remainder, which is what we are after.

1 incHead
2 . . .
3 move .w (a3) + , d4 ; Get t h e b u f f e r s i z e
4 move .w (a3) + , d5 ; Get t h e head o f f s e t
5 e x t . l d5 ; For DIVU
6 addq . l #1 , d5 ; Next head o f f s e t
7 d ivu d4 , d5 ; D i v id e by b u f f e r s i z e
8 swap d5 ; Remainder i n low word
9 . . .

Listing 6.13: Incrementing an offset using DIVU

We have to take care here not to increment the head pointer until after it has been sign extended to
a long – if the value happened to be 32767, $7FFF, and it was incremented to $8000, it would be
sign extended to $FFFF 8000 and after the division, the new head pointer would be wrong. Listing
6.14 shows the code again, but this time, with the register values displayed as comments.

1 incHead
2 . . .
3 move .w (a3) + , d4 ; D4 = xxxx 8000
4 move .w (a3) + , d5 ; D5 = xxxx 7FFF
5 e x t . l d5 ; D5 = 0000 7FFF
6 addq . l #1 , d5 ; D5 = 0000 8000
7 d ivu d4 , d5 ; D5 = 0000 0001
8 swap d5 ; Remainder = 0000
9 . . .

Listing 6.14: Correct offset incrementing with DIVU

And Listing 6.15 is the code where we increment the offset before we extend the register to a long
value.

1 incHead
2 . . .
3 move .w (a3) + , d4 ; D4 = xxxx 8000
4 move .w (a3) + , d5 ; D5 = xxxx 7FFF
5 addq .w #1 , d5 ; D5 = 0000 8000
6 e x t . l d5 ; D5 = FFFF 8000
7 d ivu d4 , d5 ; D5 = FFFF 8000
8 swap d5 ; Remainder = FFFF ! ! ! ! ! ! !
9 . . .

Listing 6.15: Incorrect offset incrementing with DIVU

We expected the remainder to be zero, and yet it actually appears to be 65535. This is, as noted,
slightly incorrect. Read on.

40 Chapter 6. Circular Buffers

6.3.13 QPC2 Bug? My Mistake?

In Listing 6.14 I show the result of the DIVU instruction as D5 = $0001 FFFF which is correct.
When I was making sure that I wasn’t talking rubbish again4 regarding Listing 6.15, I traced the
code through with QMON2. I could see that the DIVU instruction gave the result as D5 = $FFFF
8000 which is completely wrong!

I mentioned this problem on the this topic on QLForum5 as I thought I might have found a corner
case bug in QPC2. I hadn’t of course.

The problem was, when I traced the code, and saw the result of the division being so obviously
wrong, I leapt to the conclusion that it had to be a bug. Unfortunately, what I had neglected to do
was look at the flags. Had I done so, I would have noticed the V flag, overflow, was set after the
division. Duh!

The error of my ways was pointed out by Marcel and Tobias. Thanks to them, for being gentle with
me!

The manual for the 68008 says that “Overflow may be detected and set before the instruction
completes. If the instruction detects an overflow, it sets the overflow condition code and the
operands are unaffected.”

Look at the values in the D5.L register just before and after the DIVU instruction? They are exactly
the same.

Had the division been a valid one, it would have resulted in a quotient of $0001 FFFF and no
remainder. The quotient is larger than a word, so wouldn’t have fitted in D5.W where it should
go. The overflow was detected and dealt with exactly as specified in the manual. And I missed it,
completely! Even though I used a couple of hex calculators to check what the answer should have
been and knew something was wrong with $0001 FFFF, I didn’t twig the the obvious fact that the
quotient was bigger than a word. Not that it wasn’t staring me in the face!

So, don’t be like me, watch the flags when something goes weird on you, and make sure you haven’t
done, or missed, anything silly!

NOTE: As I’m running QPC2, I have the benefit of the 68020 CPU rather than the 68008. The
68020 has a DIVU.L <ea>,Dq:Dr instruction which takes a 32 bit value in the effective address,
divides by the Dq register and places a 32 bit quotient in Dq with the remainder in Dr. This will not
work on a bare bones QL of course.

6.4 Test Harness

So, that’s the circular buffer code written. Does it work6? Listing 6.16 is a small test harness to
exercise the buffer handling code.

The code begins by asking for a 5 byte buffer. This is not a power of two, so it will be rounded up
to 8 bytes, 7 of which can be used. The buffer will then be filled up with data, the characters ‘A’
through ‘G’ and tested to ensure it is indeed full.

After this, the data will be read back, one byte at a time until there is no more data whereupon it
will be checked for emptiness and then deleted.

4It happens
5The URL is https://qlforum.co.uk/viewtopic.php?f=19&t=3966&p=44307#p44295 if you have printed out a copy of

this issue of the eMagazine.
6Given who wrote it, probably not!

https://qlforum.co.uk/viewtopic.php?f=19&t=3966&p=44307#p44295

6.4 Test Harness 41

1 ;−−
2 ; T e s t Harnes s
3 ;−−
4 ; A q u i c k and d i r t y t e s t o f t h e c B u f f e r s _ a s m code . I t w i l l :
5 ;
6 ; 1 . Reques t a b u f f e r o f 5 b y t e s , b u t w i l l g e t one o f 8 .
7 ; 2 . Wr i t e ABCDEFG t o i t , f i l l i n g i t up .
8 ; 3 . T e s t i f i t i s f u l l , D0 = 0 means i t i s .
9 ; 4 . Read back a l l t h e da t a , ABCDEFG, empty ing t h e b u f f e r .

10 ; 5 . T e s t i f i t i s empty , D0 = 0 i f so .
11 ; 6 . F ree t h e b u f f e r .
12 ;
13 ; The code h e r e was s imp ly t r a c e d t h r o u g h QMON2 t o be s u r e t h a t
14 ; e v e r y t h i n g was working . I t was . E r r o r c h e c k i n g i s few and f a r
15 ; be tween due t o t h e use o f QMON2.
16 ;
17 ; F e e l f r e e t o use t h i s a s a s t a r t e r i f you e v e r need t o use
18 ; c i r c u l a r b u f f e r s (FIFO) i n your code .
19 ;−−
20 s t a r t
21 moveq #5 , d0 ; Wi l l round up t o 8
22 b s r a l l o c a t e B u f f e r ; C r e a t e b u f f e r
23
24 moveq # ’A’ , d1 ; F i r s t b y t e
25 addLoop
26 b s r addByte ; Add 1 b y t e
27 bne . s addEnd ; B u f f e r f u l l ?
28 addq #1 , d1 ; No , n e x t b y t e
29 b r a . s addLoop ; And a g a i n
30
31 addEnd
32 b s r i s F u l l ; D0 = 0 t h e n f u l l
33
34 getLoop
35 b s r g e t B y t e ; Get 1 b y t e
36 bne . s ge tEnd ; B u f f e r empty ?
37 b r a . s ge tLoop ; No , n e x t b y t e
38
39 getEnd
40 b s r i sEmpty ; D0 = 0 t h e n empty
41 b s r f r e e B u f f e r ; D e l e t e b u f f e r
42
43 c l r . l d0 ; For SuperBASIC
44 r t s
45
46 ; P u l l i n t h e cBuf fe r_asm code .
47 i n " ram1_cBuf fe r s_asm "

Listing 6.16: Test harness for cBuffer code

Obviously, error checking is not a major priority here as the code was only ever intended to be used
within QMON2 so that return values and such like could be checked and the buffer displayed on
screen as required. Hopefully, it gives you an idea in how to use the buffer handling code. I look
forward to hearing all about the programs you have written that use it.

7. Image Credits

The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by German
biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used is of
various Polycystines which are a specific kind of micro-fossil.

I have also cropped the image for use on each chapter heading page.

You can read about Polycystines on Wikipedia and there is a brief overview of the above book,
also on Wikipedia, which shows a number of other images taken from the book. (Some of which I
considered before choosing the current one!)

Polycystines have absolutely nothing to do with the QL or computing in general - in fact, I suspect
they died out before electricity was invented - but I liked the image, and decided that it would make
a good cover for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are ancient.

https://en.wikipedia.org/wiki/Polycystine
https://en.wikipedia.org/wiki/Kunstformen_der_Natur

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 News
	3 Feedback on Issue 8
	4 QL2WIN
	4.1 The Code
	4.2 Filter Chains

	5 Win2QL
	5.1 Changes From Ql2win

	6 Circular Buffers
	6.1 How Big is my Buffer?
	6.2 Buffer Structure
	6.3 The Buffer Handling Code
	6.3.1 Allocate a New Buffer
	6.3.2 Buffer Size Adjustments
	6.3.3 Free a Buffer
	6.3.4 Buffer Check
	6.3.5 Write Data to a Buffer
	6.3.6 Read Data from a Buffer
	6.3.7 Is the Buffer Full?
	6.3.8 Is the Buffer Empty?
	6.3.9 How Much Space is Used?
	6.3.10 How Much Space is Free?
	6.3.11 Flushing Buffers
	6.3.12 Incrementing Head and Tail Offsets
	6.3.13 QPC2 Bug? My Mistake?

	6.4 Test Harness

	7 Image Credits

